Electromechanical irrigation gate with overflow and underflow combination

Authors

  • Susi Hidayah Experimental Station for Irrigation, Research Center for Water Resources, Research and Development Agency, Ministry of Public Works and Public Housing
  • Aditya Prihantoko Experimental Station for Road and Bridge Technology Implementation, Research Institute of Policy Studies And Technology Implementation, Research and Development Agency, Ministry of Public Works and Public Housing

DOI:

https://doi.org/10.31028/ji.v11.i2.113-124

Keywords:

gate, combination, overflow and underflow, GFRP, double flow sliding gate

Abstract

Discharge adjustment in an essential activity in irrigation network. This commonly done using underflow irrigation gate (e.g. sliding gate) which have disadvantages regarding the hydraulic property of flow and floating debris. The overflow irrigation gate (e.g. skot beam) can overcome this but is difficult to operate. It is necessary to combine the important features of both structures so that the disadvantages can be avoided. This paper explains results on the development of double flow sliding gate with underflow and overflow combination which is designed to overcome the undesired hydraulic properties (energy loss) and inaccuracies of flow measurement because of sedimentation. The gate was designed to be easily operated using a solar powered electromechanical system that can be monitored and controlled remotely. Additionally, the gate also built using alternative materials that are GFRP honeycomb composite. The method used is laboratory and field tests on the designed double flow irrigation gate. Physical test results showed the value of materials qualified with predicted loading on the gate.  The hydraulic test provided that the gate can predict discharge accurately during water level of 10, 20, and 30 cm. The gate can also control discharge effectively to fulfill fluctuating water balance needs in the service area. This results could be used as a reference to apply the concept of double flow sliding gate which is stated in the Indonesia Irrigation Planning Criteria 08, 2013.

Downloads

Download data is not yet available.

References

Aminuddin, Suwardji, & Basuki E. (2014). Rancang bangun alat penyiraman tanaman otomatis dengan sistem irigasi tetes berbasis pompa energi surya dari sumber air sumur tanah dalam pada lahan kering. Jurnal Ilmiah Rekayasa Pertanian dan Biosistem, 2(2), 79-86.

Balai Litbang Teknologi Irigasi. (2015). Penelitian Komponen Struktur Jaringan Irigasi (Laporan Akhir). Bekasi: Balai Irigasi, Puslitbang SDA, Balitbang, Kementerian PUPR.

Binilang, A. (2014). Perilaku hubungan antar parameter hidrolis air loncat melalui pintu sorong pada saluran terbuka. Jurnal Ilmiah Media Engineering, 4(1), 41-44.

Direktorat Irigasi dan Rawa. (2013a). Standar Perencanaan Irigasi - Bagian Bangunan (KP-04). Jakarta: Direktorat Irigasi dan Rawa, Direktorat Jenderal Sumber Daya Air, Kementerian Pekerjaan Umum.

Direktorat Irigasi dan Rawa. (2013b). Standar Perencanaan Irigasi - Bagian Perencanaan, Pemasangan, Operasi dan Pemeliharaan Pintu Pengatur Air (KP-08). Jakarta: Direktorat Irigasi dan Rawa, Direktorat Jenderal Sumber Daya Air, Kementerian Pekerjaan Umum.

Hasan, H. (2012). Perancangan pembangkit listrik tenaga surya di Pulau Saugi. Jurnal Riset dan Teknologi Kelautan, 10(2), 169-180.

Kumar, M., Reddy, K.S., Adake, R.V., & Rao, C.V.K.N. (2015). Solar powered micro-irrigation system for small holders of dryland agriculture in India. Agricultural Water Management, 158, 112-119. DOI: 10.1016/j.agwat.2015.05.006

Prihantoko A., Joubert, M.D., & Rahmandani, D. (2015). Penggunaan material komposit sebagai komponen pintu air alternatif. Jurnal Irigasi, 10(1), 49-56.

Sirait, S., Saptomo, S.K., & Purwanto, M.Y.J. (2015). Rancang bangun sistem otomatisasi irigasi pipa lahan sawah berbasis tenaga surya. Jurnal Irigasi, 10(1), 21-32.

Subramanya, K. (2009). Flow in Open Channel. Singapura: McGraw-Hill International.

Tusi A., Setiawan, B.I., & Sofiyuddin, H.A. (2010). Pengembangan pintu air GFRP (Glass Fiber Reinforce Plastic). Jurnal Irigasi, 5(1), 57-67.

Zheng, L., Li, M., Wu, C., Ye, H., Ji, R., Deng, X., & Guo, W. (2011). Development of a smart mobile farming service system. Mathematical and Computer Modelling, 54(3-4), 1194-1203. DOI: 10.1016/j.mcm.2010.11.053

Published

2017-08-08

How to Cite

Hidayah, S., & Prihantoko, A. (2017). Electromechanical irrigation gate with overflow and underflow combination. Jurnal Irigasi, 11(2), 113–124. https://doi.org/10.31028/ji.v11.i2.113-124
Loading...