Analysis of potential evapotranspiration by various empirical model and artificial neural networks with limited weather data
DOI:
https://doi.org/10.31028/ji.v15.i2.71-84Keywords:
potential evapotranspiration, artificial neural networks, crop water requirement, empirical model, weather parameterAbstract
On the determination of crop water requirements, climate data are essential but are often limited due to the farm field's lack of weather station. For this reason, it is necessary to consider plant water requirements with various potential evapotranspiration (ETp) models with various weather input parameters, including Artificial Neural Network (ANN) models. The objectives of this paper were 1) to develop ANN models to estimate ETp, 2) to compare various ETp models (empirical models) including ANN models with the FAO standard models, 3) to analyze crop water requirements by the models, and 4) to determine the recommended input parameters for estimating ETp. The analysis was performed based on the measurement of weather parameters data in the two rice planting seasons, i.e., April - August 2017 and January - May 2018. There are 8 ETp models (empirical models) and 3 ANN models with a combination of input parameters. The results of this study indicated that the ANN-2 model with solar radiation input parameters was the best ANN model with R2 values 0.91-0.92 and RMSE 0.284 mm and 0.287 mm for the 2017 and 2018 planting seasons. ETp Turc model, one of the empirical ETp models with parameters input of air temperature and solar radiation, was the best model with the highest R2 and the lowest RMSE. Therefore, these two models were the best models with total ETp values closed to the ETp FAO standard. In addition, the parameters of air temperature and solar radiation are recommended parameters to be measured in the determination of crop water requirements using the ETp Turc model. But if there is only one parameter that can be measured, it is recommended to measure solar radiation with ANN-2 models to determine potential evapotranspiration.
Downloads
References
Ali, Md. H., & Shui, L. T. (2008). Potential evapotranspiration model for Muda Irrigation Project, Malaysia. Water Resources Management, 23(1), 57. https://doi.org/10.1007/s11269-008-9264-6
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop Evapotranspiration Guidelines for Computing Crop Water Requirements (FAO Irrigation and Drainage Paper No. 56). Rome, Italy: Food and Agriculture Organization.
Arif, C., Setiawan, B. I., Mizoguchi, M., & Doi, R. (2012). Estimation of soil moisture in paddy field using Artificial Neural Networks. International Journal of Advanced Research in Artificial Intelligence (IJARAI), 1(1), 17-21.
Arif, C., Setiawan, B. I., Widodo, S., Hasanah, N. A. I., Mizoguchi, M., & others. (2015). Pengembangan model jaringan saraf tiruan untuk menduga emisi gas rumah kaca dari lahan sawah dengan berbagai rejim air. Jurnal Irigasi, 10(1), 1-10.
Bogawski, P., & Bednorz, E. (2014). Comparison and validation of selected evapotranspiration models for conditions in Poland (Central Europe). Water Resources Management, 28(14), 5021-5038. https://doi.org/10.1007/s11269-014-0787-8
Brouwer, C., & Heibloem, M. (1986). Irrigation water management: Irrigation water needs (Irrigation Water Management Training Manual No. 3). Rome, Italy: Food and Agriculture Organization. Diperoleh dari http://www.fao.org/docrep/S2022E/S2022E00.htm
Choi, E. C. C. (1994). Parameters affecting the intensity of wind-driven rain on the front face of a building. Journal of Wind Engineering and Industrial Aerodynamics, 53(1), 1-17. https://doi.org/10.1016/0167-6105(94)90015-9
Doorenbos, J., & Pruitt, W. O. (1977). Guidelines for Predicting Crop Water Requirements (FAO Irrigation and Drainage Paper No. 24). Rome, Italy: Food and Agriculture Organization.
Douglas, E. M., Jacobs, J. M., Sumner, D. M., & Ray, R. L. (2009). A comparison of models for estimating potential evapotranspiration for Florida land cover types. Journal of Hydrology, 373(3), 366-376. https://doi.org/10.1016/j.jhydrol.2009.04.029
Estévez, J., Gavilán, P., & Berengena, J. (2009). Sensitivity analysis of a Penman-Monteith type equation to estimate reference evapotranspiration in southern Spain. Hydrological Processes, 23(23), 3342-3353. https://doi.org/10.1002/hyp.7439
Falamarzi, Y., Palizdan, N., Huang, Y. F., & Lee, T. S. (2014). Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs). Agricultural Water Management, 140, 26-36. https://doi.org/10.1016/j.agwat.2014.03.014
Fisher, J. B., DeBiase, T. A., Qi, Y., Xu, M., & Goldstein, A. H. (2005). Evapotranspiration models compared on a Sierra Nevada forest ecosystem. Environmental Modelling & Software, 20(6), 783-796. https://doi.org/10.1016/j.envsoft.2004.04.009
Gebler, S., Hendricks Franssen, H.-J., Pütz, T., Post, H., Schmidt, M., & Vereecken, H. (2015). Actual evapotranspiration and precipitation measured by lysimeters: A comparison with eddy covariance and tipping bucket. Hydrology and Earth System Sciences, 19(5), 2145-2161. https://doi.org/10.5194/hess-19-2145-2015
Handoko (Ed.). (1995). Klimatologi Dasar: Landasan Pemahaman Fisika Atmosfer dan Unsur- Unsur Iklim. Jakarta, Indonesia: Pustaka Jaya.
Jensen, M. E. (Ed.). (1980). Design and Operation of Farm Irrigation Systems. Michigan, USA: American Society of Agricultural Engineers.
June, T., Dewi, N. W. S. P., & Meijide, A. (2018). Perbandingan metode aerodinamik, Bowen Ratio dan Penman-Monteith dalam penentuan evapotranspirasi pertanaman kelapa sawit. Agromet, 32(1), 11-20. https://doi.org/10.29244/j.agromet.32.1.11-20
Khoob, A. R. (2008). Comparative study of Hargreavess and artificial neural networks methodologies in estimating reference evapotranspiration in a semiarid environment. Irrigation Science, 26(3), 253-259. https://doi.org/10.1007/s00271-007-0090-z
Kisi, O. (2014). Comparison of different empirical methods for estimating daily reference evapotranspiration in mediterranean climate. Journal of Irrigation and Drainage Engineering, 140(1), 04013002. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000664
Kumar, M., Raghuwanshi, N. S., & Singh, R. (2011). Artificial neural networks approach in evapotranspiration modeling: A review. Irrigation Science, 29(1), 11-25. https://doi.org/10.1007/s00271-010-0230-8
Kusumadewi, S. (2003). Artificial Intelligence (Teknik dan Aplikasinya). Yogyakarta, Indonesia: Graha Ilmu.
Lippman. (1998). Estimating Potential Evaporation and Management 2nd Edition. Virginia, USA: Reston Publishing Company, Inc.
Manik, T. K., Sanjaya, P., & Rosadi, R. A. B. (2017). Comparison of different models in estimating standard evapotranspiration in Lampung Province, Indonesia. International Journal of Environment, Agriculture and Biotechnology, 2(5), 2309-2318.
Maulé, C., Helgalson, W., McGinn, S., & Cutforth, H. (2005). Estimation of standardized reference evapotranspiration on the Canadian Prairies using simple models with limited weather data. Dipresentasikan pada CSAE/SCGR 2005 Meeting, Winnipeg, Canada. Diperoleh dari http://www.csbe-scgab.ca/docs/meetings/2005/05-054.pdf
Mulyadi, M., Soekarno, I., & Winskayati, W. (2014). Analisis pilar modernisasi irigasi dengan pendekatan Analytical Hierarchy Process (AHP) pada Daerah Irigasi Barugbug-Jawa Barat. Jurnal Teknik Sipil, 21(3), 213-220.
Perugu, M., Singam, A. J., & Kamasani, C. S. R. (2013). Multiple Linear Correlation Analysis of Daily Reference Evapotranspiration. Water Resources Management, 27(5), 1489-1500. https://doi.org/10.1007/s11269-012-0250-7
Qian, Y., Wang, W., Leung, L. R., & Kaiser, D. P. (2007). Variability of solar radiation under cloud-free skies in China: The role of aerosols. Geophysical Research Letters, 34(12). https://doi.org/10.1029/2006GL028800
Setiawan, B. I., Imansyah, A., Arif, C., Watanabe, T., Mizoguchi, M., & Kato, H. (2014). SRI paddy growth and GHG emissions at various groundwater levels. Irrigation and Drainage, 63(5), 612-620.
Sharifi, A., & Dinpashoh, Y. (2014). Sensitivity Analysis of the Penman-Monteith reference Crop Evapotranspiration to Climatic Variables in Iran. Water Resources Management, 28(15), 5465-5476. https://doi.org/10.1007/s11269-014-0813-x
Tukimat, N. N. A., Harun, S., & Shahid, S. (2012). Comparison of different methods in estimating potential evapotranspiration at Muda Irrigation Scheme of Malaysia. Journal of Agriculture and Rural Development in the Tropics and Subtropics (JARTS), 113(1), 77-85.
Wati, T., Pawitan, H., & Sopaheluwakan, A. (2015). Pengaruh parameter cuaca terhadap proses evaporasi pada interval waktu yang berbeda. Jurnal Meteorologi dan Geofisika, 16(3), 155-165. https://doi.org/10.31172/jmg.v16i3.286
Wu, I. P. (1997). A simple evapotranspiration model for Hawaii: The Hargreaves model (CTAHR Fact Sheet, Engeineers Notebook No. 106). Honolulu, Hawaii: University of Hawaii. Diperoleh dari https://scholarspace.manoa.hawaii.edu/bitstream/10125/12218/EN-106.pdf
Xing, X., Liu, Y., Zhao, W., Kang, D., Yu, M., & Ma, X. (2016). Determination of dominant weather parameters on reference evapotranspiration by path analysis theory. Computers and Electronics in Agriculture, 120, 10-16. https://doi.org/10.1016/j.compag.2015.11.001
Xu, C. Y. (2002). Textbook of Hydrologic Models. Sweden: Uppsala University.
Yassin, M. A., Alazba, A. A., & Mattar, M. A. (2016). Artificial neural networks versus gene expression programming for estimating reference evapotranspiration in arid climate. Agricultural Water Management, 163, 110-124. https://doi.org/10.1016/j.agwat.2015.09.009
Zhao, P., Li, S., Li, F., Du, T., Tong, L., & Kang, S. (2015). Comparison of dual crop coefficient method and Shuttleworth-Wallace model in evapotranspiration partitioning in a vineyard of northwest China. Agricultural Water Management, 160, 41-56. https://doi.org/10.1016/j.agwat.2015.06.026
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.