Potensi pemanasan global dari padi sawah System of Rice Intensification (SRI) dengan berbagai ketinggian muka air tanah

Penulis

  • Chusnul Arif Departemen Teknik Sipil dan Lingkungan, Institut Pertanian Bogor
  • Budi Indra Setiawan Departemen Teknik Sipil dan Lingkungan, Institut Pertanian Bogor
  • Deka Trisnadi Munarso Departemen Teknik Sipil dan Lingkungan, Institut Pertanian Bogor
  • Muhammad Didik Nugraha Departemen Teknik Sipil dan Lingkungan, Institut Pertanian Bogor
  • Pradha Wihandi Sinarmata Departemen Teknik Sipil dan Lingkungan, Institut Pertanian Bogor
  • Ardiansyah Ardiansyah Jurusan Teknik Pertanian, Universitas Jenderal Soedirman
  • Masaru Mizoguchi Department of Global Agricultural Sciences, The University of Tokyo

DOI:

https://doi.org/10.31028/ji.v11.i2.81-90

Kata Kunci:

gas rumah kaca, potensi pemanasan global, SRI, tinggi muka air tanah, rezim air

Abstrak

System of Rice Intensification (SRI) merupakan budidaya alternatif padi sawah untuk mitigasi Gas Rumah Kaca (GRK). Dua jenis GRK utama yang diemisikan dari padi sawah adalah gas metana (CH4) dan dinitrogen oksida (N2O). Gas tersebut memiliki respon berbeda terhadap keragaman ketersediaan air di lahan yang direpresentasikan dengan tinggi muka air tanah. Global Warming Potential (GWP) atau potensi pemanasan global digunakan untuk membandingkan potensi GRK dalam memanaskan bumi pada periode tertentu, dan disetarakan dengan nilai potensi gas CO2. Penelitian ini bertujuan untuk membandingkan potensi pemanasan global pada berbagai rezim air dengan ketinggian muka air yang berbeda di lahan sawah yang menerapkan SRI. Penelitian dilakukan pada budidaya padi sawah dengan tiga perlakuan rezim air selama satu musim tanam (14 April  hingga 5 Agustus 2016) di plot percobaan laboratorium lapang Departemen Teknik Sipil dan Lingkungan IPB, Bogor, Jawa Barat. Ketiga perlakuan rezim air tersebut adalah rezim tergenang, moderate dan kering . Hasil penelitian menunjukkan bahwa rezim air kering menghasilkan potensi pemanasan global terendah dibandingkan kedua rezim yang lain. Nilai potensi pemanasan global yang dihasilkan adalah 34% dan 41% lebih rendah dibandingkan rezim air tergenang dan moderate. Rezim kering mampu meningkatkan produktivitas tanaman 21% lebih besar dibandingkan rezim air tergenang. Untuk memperkuat hasil yang diperoleh ini, maka penelitian lanjutan diperlukan dengan kondisi cuaca yang berbeda dan lokasi yang beragam.

Unduhan

Data unduhan belum tersedia.

Referensi

[IAEA] International Atomic Energy Agency. (1993). Manual on Measurement of Methane and Nitrous Oxide Emission from Agriculture. Vienna: IAEA.

Arif, C., Setiawan, B.I., Widodo, S., Rudiyanto, Hasanah, N.A.I., & Mizoguchi, M. (2015). Pengembangan model jaringan saraf tiruan untuk menduga emisi gas rumah kaca dari lahan sawah dengan berbagai rejim air. Jurnal Irigasi, 10(1), 1-10.

Arif, C., Setiawan, B.I., & Mizoguchi, M. (2014). Penentuan kelembaban tanah optimum untuk budidaya padi sawah SRI (System of Rice Intensification) menggunakan algoritma genetika (determining optimal soil moisture for system of rice intensification paddy field using genetic algorithms). Jurnal Irigasi, 9 (1), 1-12.

Arif, C., Toriyama, K., Nugroho, B.A.D., & Mizoguchi, M. (2015). Crop coefficient and water productivity in conventional and System of Rice Intensification (SRI) irrigation regimes of terrace rice fields in Indonesia. Jurnal Teknologi, 75(17), 95-102.

Barison, J. (2003). Nutrient-use efficiency and nutrient uptake in conventional and intensive (SRI) rice cultivation systems in Madagascar (Tesis). Ithaca, New York: Department of Crop and Soil Sciences, Cornell University.

Bouman, B.A.M., Peng, S., Castaneda, A.R., & Visperas, R.M. (2005). Yield and water use of irrigated tropical aerobic rice systems. Agricultural Water Management, 74(2), 87-105.

Cai, Z.C., Xing, G.X., Yan, X.Y., Xu, H., Tsuruta, H., Yagi, K., & Minami, K. (1997). Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management. Plant and Soil, 196(1), 7-14.

Chapagain, T., & Yamaji, E. (2010). The effects of irrigation method, age of seedling and spacing on crop performance, productivity and water-wise rice production in Japan. Paddy and Water Environment, 8(1), 81-90.

Dill, J., Deichert, G., & Thu, L.T.N. (2013). Promoting the System of Rice Intensification: Lessons Learned From Trà Vinh Province, Viet Nam. Hanoi: German Agency for International Cooperation (GIZ) and International Fund for Agricultural Development (IFAD).

Gardini, F., Antisari, L.V., Guerzoni, M.E., & Sequl, P. (1991). A simple gas chromatographic approach to evaluate CO2 release, N2O evolution, and uptake from soil. Biology and Fertility of Soils, 12(1), 1-4.

Hidayah, S., D.A. Arifianty, M.D. Joubert, & Soekrasno. (2010). Intermittent irrigation in System of Rice Intensification potential as an adaptation and mitigation option of negative impacts of rice cultivation in irrigated paddy field. Dipresentasikan pada The 6th Asian Regional Conference of ICID of International Commission on Irrigation and Drainage, Yogyakarta. Diperoleh dari http://www.rid.go.th/thaicid/_6_

activity/Technical-Session/SubTheme2/2.10-Susi_H-Dewi_AA-Marasi_DJ-Soekrasno.pdf

Hupet, F., & Vanclooster, M. (2001). Effect of the sampling frequency of meteorological variables on the estimation of the reference evapotranspiration. Journal of Hydrology, 243(3), 192-204.

[IPCC] Intergovernmental Panel on Climate Change. (2007). Climate Change 2007: The Physical Scientific Basis, Contribution of Working Group I to The Fourth Assessment Report of The Intergovernmental Panel Onclimate Change. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, H. S. Miller, Ed.). Cambridge & New York: Cambridge University Press.

[IPCC] Intergovernmental Panel on Climate Change. (2013). Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Alen, A. Boschung, P.M. Midgey, Ed.). Cambridge & New York: Cambridge University Press.

Jain, N., Dubey, R., Dubey, D.S., Singh, J., Khanna, M., Pathak, H., & Bhatia., A. (2014). Mitigation of greenhouse gas emission with system of rice intensification in the Indo-Gangetic Plains. Paddy and Water Environment. 12(3), 355-363.

Ly, P., Jensen, L.S., Bruun, T.B., & de Neegaard, A. (2013). Methane (CH4) and nitrous oxide (N2O) emissions from the system of rice intensification (SRI) under a rain-fed lowland rice ecosystem in Cambodia. Nutrient Cycling in Agroecosystem, 97, 13-27.

Rajkishore, S.K., Doraisamy, P., Subramanian, K.S., & Maheswari, M. (2013). Methane emission patterns and their associated soil microflora with SRI and conventional systems of rice cultivation in Tamil Nadu, India. Taiwan Water Conservancy, 61(4), 126-134.

Sato, S., Yamaji, E., & Kuroda, T. (2011). Strategies and engineering adaptions to disseminate SRI methods in large-scale irrigation systems in Eastern Indonesia. Paddy and Water Environment, 9(1), 79-88.

Setyanto, P., Rosenani, A.B., Boer, R., Fauziah, C.I., & Khanif, M.J. (2004). The effect of rice cultivars on methane emission from irrigated rice field. Indonesian Journal of Agricultural Science, 5(1), 20-31.

Setyanto, P. (2008). Teknologi mengurangi emisi gas rumah kaca dari lahan sawah. Buletin Iptek Tanaman Pangan, 3(2), 205-214.

Setyanto, P., & Bakar R.A. (2005). Methane emission from paddy fields as influenced by different water regimes in Central Java. Indonesian Journal of Agricultural Sciences, 6(1), 1-9.

Setyanto, P., Makarim, A.K., Fagi, A.M., Wassman, R., & Buendia, L.V. (2000). Crop management affecting methane emissions from irrigated and rainfed rice in Central Java (Indonesia). Nutrient Cycling in Agroecosystemss, 58, 85-93.

Sheehy, J.E, Peng, S., Dobermann, A., Mitchell, P.L., Ferrer, A., Yang, J.C., Zou, Y.B., Zhong, X.H., & Huang, J.L. (2004). Fantastic yields in the system of rice intensification: fact or fallacy?. Field Crop Research, 88(1), 1-8.

Sinha, S.K., & Talati, J. (2007). Productivity impacts of the system of rice intensification (SRI): a case study in West Bengal, India. Agricultural Water Management, 87(1), 55-60.

Snyder, C.S., Bruulsema, T.W., & Jensen, T.L. (2007). Best management practices to minimize greenhouse gas emissions associated with fertilizer use. Better Crops, 19, 16-18.

Uphoff, N., Kassam, A., & Harwood, R. (2011). SRI as a methodology for raising crop and water productivity: productive adaptations in rice agronomy and irrigation water management. Paddy and Water Environment, 9(1), 3-11.

Wu, I.P. (1997). A Simple Evapotranspiration Model for Hawai: the Hagreaves Model (CTAHR Sheet Engineers Notebook). Diperoleh Oktober 2016, dari http://www.ctahr.hawaii.edu/oc/freepubs /pdf/EN-106.pdf

Unduhan

Diterbitkan

2017-08-08

Cara Mengutip

Arif, C., Setiawan, B. I., Munarso, D. T., Nugraha, M. D., Sinarmata, P. W., Ardiansyah, A., & Mizoguchi, M. (2017). Potensi pemanasan global dari padi sawah System of Rice Intensification (SRI) dengan berbagai ketinggian muka air tanah. Jurnal Irigasi, 11(2), 81–90. https://doi.org/10.31028/ji.v11.i2.81-90

Terbitan

Bagian

Artikel

Artikel paling banyak dibaca berdasarkan penulis yang sama

> >> 
Loading...