Pengembangan model jaringan saraf tiruan untuk menduga emisi gas rumah kaca dari lahan sawah dengan berbagai rejim air

Penulis

  • Chusnul Arif Departemen Teknik Sipil dan Lingkungan, IPB
  • Budi Indra Setiawan Departemen Teknik Sipil dan Lingkungan, IPB
  • Slamet Widodo Departemen Teknik Mesin dan Biosistem, IPB
  • - Rudiyanto Departemen Teknik Sipil dan Lingkungan, IPB
  • Nur Aini Iswati Hasanah Departemen Teknik Sipil dan Lingkungan, IPB
  • Masaru Mizoguchi Department of Global Agricultural Sciences, The University of Tokyo

DOI:

https://doi.org/10.31028/ji.v10.i1.1-10

Kata Kunci:

jaringan syaraf tiruan, lingkungan biofisik, sistem irigasi, emisi gas rumah kaca, padi sawah

Abstrak

Makalah ini menyajikan model Jaringan Syaraf Tiruan (JST) untuk memprediksi gas metan (CH4) dan Nitrous Oxide (N2O) yang diemisikan dari padi sawah dengan perlakukan berbagai pemberian air berdasarkan data parameter lingkungan biofisik di dalam tanah yang mudah diukur seperti kelembaban tanah, suhu tanah dan daya hantar listrik (DHL) tanah hanya dengan satu jenis sensor. Untuk melakukan validasi model, percobaan budidaya padi sawah di pot dilakukan di dua tempat berbeda, yaitu di rumah kaca, Meiji University, Kanagawa Jepang dari 4 Juni sampai 21 September 2012 dan di laboratorium Teknik Sumberdaya Air, Departemen Teknik Sipil dan Lingkungan-IPB dari 2 Juli sampai 10 Oktober 2014. Di setiap lokasi, terdapat tiga percobaan pemberian air dengan mengadopsi metode budidaya System of Rice Intensification (SRI). Perlakuan tersebut diberi nama SRI Basah (disingkat SRI B1 dan SRI B2 untuk lokasi pertama dan kedua), SRI Sedang (SRI S1 dan SRI S2) dan SRI Kering (SRI K1 dan SRI K2). Perbedaan percobaan antar perlakuan adalah pengaturan tinggi muka disetiap umur tanaman. Dari model JST yang dikembangkan didapatkan hasil validasi dengan nilai koefisien determinasi (R2) sebesar 0.93 dan 0.70 untuk prediksi emisi gas CH4 dan N2O yang mengindikasikan bahwa model dapat diterima. Dari model tersebut, karakteristik emisi gas CH4 dan N2O terhadap perubahan parameter lingkungan biofisik dapat dijelaskan dengan baik. Untuk strategi mitigasi dari percobaan pemberian air yang dilakukan, pemberian air pada perlakuan SRI B1 dan B2 dengan menjaga jeluk muka air disekitar permukaan tanah merupakan strategi yang terbaik dengan indikator produksi tertinggi dan emisi gas rumah kaca (GRK) terendah.

Unduhan

Data unduhan belum tersedia.

Referensi

Akiyama, H., Yagi, K., Yan, X.Y. 2005. Direct N2O emissions from rice paddy fields: Summary of available data. Global Biogeochem Cy 19.

Arif, C, 2013. Optimizing water management in system of rice intensification paddy fields by field monitoring technology. Global Agricultural Sciences. The University of Tokyo, Tokyo, p. 143.

Basheer, I.A., Harmeer, M. 2000. Artificial Neural Networks: fundamentals, computing, design, and application. Journal of Microbiological Methods 43: 3-31.

Bouwman, A.F. 1990. Introduction, in: Bouwman, A.F. (ed.), soil and the greenhouse effects. John Wiley & Sons, New York, United States.

Cai, Z.C., Xing, G.X., Yan, X.Y., Xu, H., Tsuruta, H., Yagi, K., Minami, K. 1997. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management. Plant Soil 196: 7-14.

Cicerone, R.J., Delwiche, C.C., Typer, S.C., Zimmermann, P.R. 1992. Methane emissions from California rice paddies with varied treatments. Global Biogeochem Cy 6: 233-248.

Cicerone, R.J., Oremland, R.S. 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochem Cy 2: 229-238.

Dill, J., Deichert, G., Thu, L.T.N. 2013. Promoting the System of Rice Intensification: lessons learned from Trà Vinh Province, Viet Nam. German Agency for International Cooperation (GIZ) and International Fund for Agricultural Development (IFAD), Hanoi.

Dong, H.B., Yao, Z.S., Zheng, X.H., Mei, B.L., Xie, B.H., Wang, R., Deng, J., Cui, F., Zhu, J.G. 2011. Effect of ammonium-based, non-sulfate fertilizers on CH4 emissions from a paddy field with a typical Chinese water management regime. Atmos Environ 45: 1095-1101.

Hadi, A., Inubushi, K., Yagi, K. 2010. Effect of water management on greenhouse gas emissions and microbial properties of paddy soils in Japan and Indonesia. Paddy Water Environ 8: 319-324.

Hashimoto, Y. 1997. Applications of artificial neural networks and genetic algorithms to agricultural systems. Comput Electron Agr 18: 71-72.

Hinnell, A.C., Lazarovitch, N., Furman, A., Poulton, M., Warrick, A.W. 2009. Neuro-Drip: estimation of subsurface wetting patterns for drip irrigation using neural networks. Irrigation Sci 28: 535- 544.

Holzapfel-Pschorn, A., Seiler, W. 1986. Methane emission during a cultivation period from an Italian rice paddy. Journal of Geophysical Research 91: 803-814.

Husin, Y.A., Murdiyarso, D., Khalil, M.A.K., Rasmussen, R.A., Shearer, M.J., Sabiham, S., Sunar, A., Adijuwana, H. 1995. Methane Flux from Indonesian Wetland Rice - the Effects of Water Management and Rice Variety. hemosphere 31: 3153-3180.

Keiser, J., Utzinger, J., Singer, B.H. 2002. The potential of intermittent irrigation for increasing rice yields, lowering water consumption, reducing methane emissions, and controlling malaria in African rice fields. J Am Mosquito Contr 18: 329-340.

Li, X.L., Yuan, W.P., Xu, H., Cai, Z.C., Yagi, K. 2011. Effect of timing and duration of midseason aeration on CH4 and N2O emissions from irrigated lowland rice paddies in China. Nutr Cycl Agroecosys 91: 293-305.

Minamikawa, K., Sakai, N. 2005. The effect of water management based on soil redox potential on methane emission from two kinds of paddy soils in Japan. Agr Ecosyst Environ 107: 397-407.

Miyata A, Leuning R, Denmead OTh, Kim J, Harazonoa Y. 2000. Carbon dioxide and methane fluxes from an intermittently flooded paddy field. Agricultural and Forest Meteorology 102 (2): 287-303.

Mosier, A.R., Duxbury, J.M., Freney, J.R., Heinemeyer, O., Minami, K. 1996. Nitrous oxide emissions from agricultural fields: Assessment, measurement and mitigation. Plant Soil 181: 95-108.

Neue, H.U., Heidmann, P.B., Scharpenseel, H.W., 1990. Organic matter dynamics, soil properties, and cultural practices in rice lands and their relationship to methane production, in: Bouwman, A.F. (Ed.), Soil and the greenhouse effect. John Wiley & Sons, New York, United States, pp. 457-466.

Nishimura S, Sawamoto T, Akiyama H, Sudo S, Yagi K. 2004. Methane and nitrous oxide emissions from a paddy field with Japanese conventional water management and fertilizer application. Global Biogeochemical Cycles 18: GB2017. DOI:10.1029/2003GB002207.

Nugroho, S.G., Lumbanraja, J., Suprapto, H., Sunyoto, Ardjasa, W.S., Haraguchi, H., Kimura, M. 1994. Effect of Intermittent Irrigation on Methane Emission from an Indonesian Paddy Field. Soil Sci Plant Nutr 40: 609-615.

Purkait NN, Saha AK, De S, Chakrabarty DK. 2007. Behaviour of methane emission from a paddy field of high carbon content. Indian Journal of Radio and Space Physics 36: 52-58.

Rajkishore, S.K., Doraisamy, P., Subramanian, K.S., Maheswari, M., 2013. Methane emission patterns and their associated soil microflora with SRI and conventional systems of rice cultivation in Tamil Nadu, India. Taiwan Water Conservancy 61: 126-134.

Raju, S.K., Kumar, D.N., Duck, L. 2006. Artificial neural networks and multicriterion analysis for sustainable irrigation planning. Computers and Operations Research 33: 1138-1153.

Setiawan, B.I., Imansyah, A., Arif, C., Watanabe, T., Mizoguchi, M., Kato, H. 2014. Sri Paddy Growth and GHG Emissions at Various Groundwater Levels. Irrig Drain 63: 612-620.

Setiawan, B.I., Irmansyah, A., Arif, C., Watanabe, T., Mizoguchi, M., Kato, H. 2013. Effects of Groundwater Level on CH4 and N2O Emissions under SRI Paddy Management in Indonesia. Journal of Taiwan Water Conservancy 61: 135-146.

Setyanto P, Rosenani AB, Boer R, Fauziah CI, Khanif MJ. 2004. The effect of rice cultivars on methane emission from irrigated rice field. Indonesian Journal of Agricultural Science 5(1): 20-31.

Setyanto, P., Makarim, A.K., Fagi, A.M., Wassman, R., Buendia, L.V. 2000. Crop management affecting methane emissions from irrigated and rainfed rice in Central Java (Indonesia). Nutr Cycl Agroecosys 58: 85-93.

Smith, C.J., Brandon, M., Patrick, W.H. 1982. Nitrous-Oxide Emission Following Urea-N Fertilization of Wetland Rice. Soil Sci Plant Nutr 28: 161-171.

Snyder, C.S., Bruulsema, T.W., Jensen, T.L. 2007. Best Management Practices to Minimize Greenhouse Gas Emissions Associated with Fertilizer Use. Better crops 19: 16-18.

Towprayoon, S., Smakgahn, K., Poonkaew, S. 2005. Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields. Chemosphere 59: 1547-1556.

Tyagi, L., Kumari, B., Singh, S.N. 2010. Water management - A tool for methane mitigation from irrigated paddy fields. Sci Total Environ 408: 1085-1090.

Vogels, G.D., Keltjen, J.T., Van der Drift, C. 1988. Biochemistry of methane production biology of and aerobic microorganisms. Nature 350: 406-409.

Zou, J.W., Huang, Y., Jiang, J.Y., Zheng, X.H., Sass, R.L. 2005. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application. Global Biogeochem Cy 19.

Unduhan

Diterbitkan

2015-04-15

Cara Mengutip

Arif, C., Setiawan, B. I., Widodo, S., Rudiyanto, .-., Hasanah, N. A. I., & Mizoguchi, M. (2015). Pengembangan model jaringan saraf tiruan untuk menduga emisi gas rumah kaca dari lahan sawah dengan berbagai rejim air. Jurnal Irigasi, 10(1), 1–10. https://doi.org/10.31028/ji.v10.i1.1-10

Terbitan

Bagian

Artikel

Artikel paling banyak dibaca berdasarkan penulis yang sama

> >> 
Loading...