Efficiency of pipe irrigation system to identify the feasibility of water supply in irrigation water management

Authors

  • Afri Fajar Department of Land and Resources Land, Bogor Agriculture University
  • Muhammad Yanuar J. Purwanto Department of Civil and Environmental Engineering, Bogor Agricultural University
  • Suria Darma Tarigan Department of Land and Resources Land, Bogor Agriculture University

DOI:

https://doi.org/10.31028/ji.v11.i1.33-42

Keywords:

pipe irrigation, distribution efficiency, applications efficiency, SRI, inlet, water saving

Abstract

Irrigation water loss that commonly occurs in an agricultural area are runoff and deep percolation. Pipe irrigation has reached 98% efficiency because it can control the use of water as needed and has no seepage for water supply. Distance of paddy field’s inlet should also be a considered factor aside from irrigation technology. Rice field’s inlet distance affect the water distribution in a fields plot as they relate to application efficiency (Ea) and the efficiency of water distribution (Ed). The method used in this research was descriptive method that collect primary data and secondary data. The experiment plots were installed with irrigation pipes. The results showed Ed values above 90% in conventional and System of Rice Intensification (SRI). This explains the distribution of water in pipe irrigation evenly throughout the planting area. Ea value on experimental plots ranged between 76% - 98%. This is because of the occurrence of deep percolation and surface flow at the conventional fields, which causes decrease in efficiency. The paddy field inlets distance simulation results showed that good Ea (≥ 90%) obtained at a distance of 30 m with SRI water application gave water saving up to 10,25%. The feasibility of the water application on the value of Ea was obtained from the level of application of irrigation water’s pattern to conventional paddy at vegetative phase is critical at a distance of 170 m, while the generative phase is critical at a distance of 75 m and very critical at 178 m. SRI paddy field gives the value of feasibility of providing water at vegetative phase becomes near critical at a distance of 170 m, while the generative phase becomes critical at a distance of 150 m.

Downloads

Download data is not yet available.

References

Ali, M.H., Abustan, I., & Puteh, A.B. (2013). Irrigation management strategies for winter wheat using aquacrop model. Journal of Natural Resources and Development, 3, 106-113. Doi:10.5027/jnrd. v3i0.10.

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Roma: Food and Agricultural Organization.

[Departemen PU] Departemen Pekerjaan Umum. (1994). Prospek Penerapan Irigasi Sprinkler dan Drip di Indonesia (Laporan tidak diterbitkan). Departemen Pekerjaan Umum, Jakarta.

[Ditjen Pengairan] Direktorat Jenderal Pengairan, Departemen Pekerjaan Umum. (1986). Standar Perencanaan Irigasi KP-01. Bandung (ID): Galang Persada.

Doorenbos, J., & Pruitt, W.O. (1977). Guidelines for predicting crop water requirements. Diperoleh Oktober 2016, dari http://www.fao.org/3/a-f2430e.pdf

Hanafiah, K. A. (2007). Dasar-dasar Ilmu Tanah. Jakarta: PT. Raja Grafindo Persada.

Hansen, V.E., Israelen, W.O., & Stringham GE. (1979). Irrigation Principles and Practices. New York: John Wiley and Sons.

Hansen, V.E., Israelen, W.O., & Stringham, G.E. (1992). Dasar-dasar dan Praktek Irigasi. Jakarta: Erlangga.

Hardjowigeno, S. (2007). Ilmu Tanah. Jakarta: Akademika Pressindo.

Huda, M.N., Harisuseno, D., & Priyantoro, D. (2012). Kajian pemberian air irigasi sebagai dasar penyusunan jadwal rotasi pada daerah irigasi Tumpang Kabupaten Malang. Jurnal Teknik Pengairan, 3(2), 221-229.

Ibrahim, A. (2008). Prinsip-prinsip Tanaman Padi Metode SRI (System of Rice Intensification) Organik. Banda Aceh: Youth Service Foundation.

Isni, M., Basri, H., & Romano. (2012). Nilai ekonomi ketersediaan hasil air dari sub das Krueng Jreu Kabuaten Aceh Besar. Jurnal Manajemen Sumberdaya Lahan, 1(2), 184-193.

James, L.G. (1988). Farm Irrigation System Design. New York: John Wiley and Sons.

Masood, M.A., Raza, I., & Yaseen, M. (2012). Estimation of optimum field plot size and shape in paddy yield trial. Journal of Agricultural Research, 25(4), 280-287.

[Kemenhut] Kementerian Kehutanan. (2001). Pedoman Penyelenggaraan Pengelolaan Daerah Aliran Sungai No. 52/KPTS-II/2001. Diperoleh Oktober 2016, dari http://hukum.unsrat.ac.id/

men/menhut_52_2001.htm

Mustofa, A. (2007). Perubahan Sifat Fisik, Kimia dan Biologi Tanah pada Hutan Alam yang Diubah Menjadi lahan Pertanian di Kawasan Taman Nasional Gunung Leuser (Skripsi tidak diterbitkan). Institut Pertanian Bogor, Bogor.

Prastowo. (2007). Pengembangan model rancangan irigasi tetes pada sistem irigasi airtanah dangkal yang berkelanjutan di Kabupaten Nganjuk Jawa Timur (Disertasi tidak diterbitkan). Institut Pertanian Bogor, Bogor.

Purba, J.H. (2011). Kebutuhan dan cara pemberian air irigasi untuk tanaman padi (oryza sativa L.). Jurnal Sains dan Teknologi, 10(3), 145-155.

Purwanto, M.Y.J., & Badrudin, U. (1999). Fluktuasi kelembaban tanah pada budidaya gogorancah. Buletin Keteknikan Pertanian, 13(1), 1-7.

Purwanto, M.Y.J., Erizal, & Anika, N. (2012). Peningkatan efisiensi dan produksi pangan dengan pembangunan sistem irigasi pipa di tingkat tersier. Jurnal Irigasi, 7(2), 99-109.

Rianto, S. (2006). Efisiensi Irigasi Tanaman Padi (Oryza sativa.) dengan Metode SRI (System of Rice Intensification) (Skripsi). Diperoleh Oktober 2016, dari http://repository.ipb.ac.id/handle/

/48794

Romero, R., Muriel, J.L., Garcia, I., & Munos, de la Pena D. (2012). Research on automatic irrigation control: state of the art and recent result. Agriculture Water Management, 144, 59-66. Doi: 10.1016/j.agwat. 2012.06.026.

Sapei, A. (2000). Kajian penurunan laju perkolasi lahan sawah baru dengan lapisan kedap buatan (artificial impervious layer). Dalam Prosiding Seminar Nasional Teknik Pertanian, 1-39.

Sapei, A. (2012). Lapisan kedap buatan untuk memperkecil perkolasi lahan sawah tadah hujan dalam mendukung irigasi hemat air. Jurnal Irigasi, 7(1), 52-58.

Saptomo, S.K., Chaidirin, Y., Setiawan, B.I., & Sofiyuddin, H.A. (2012). Peningkatan efisiensi irigasi dengan introduksi sistem otomatisasi pada sistem irigasi di lahan produksi pangan. Dalam Prosiding Pertemuan Ilmiah Tahunan 29 Himpunan Ahli Teknik Hidraulik Indonesia, 407-417.

Saptomo, S.K., Setiawan, B.I., & Nakano, Y. (2004). Water regulation in tidal agriculture using wetland water level control Simulator. Journal Scientific Research and Development, 3(1).

Siebert, S., & Doll, P. (2010). Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. Journal of Hydrology, 384(3), 198-217.

Sirait, S., Saptomo, S.K., & Purwanto, M.Y.J. (2015). Rancang bangun sistem otomatisasi irigasi pipa lahan sawah berbasis tenaga surya. Jurnal Irigasi, 10 (1), 21-32.

Siregar, N. (2011). Efektifitas dan efisiensi saluran terbuka (Tesis tidak diterbitkan). Universitas Sumatra Utara, Medan.

Sri, H.B. (2000). Hidrologi, Teori, Masalah dan Penyelesaian. Yogyakarta: Beta Offset.

Sumaryanto. (2006). Peningkatan efisiensi penggunaan air irigasi melalui penerapan iuran irigasi berbasis nilai ekonomi air irigasi. Forum Penelitian Agro Ekonomi, 24 (2), 77-91.

Yoshino, H., Usuki, N., Chaiwat, P., Eriguchi, H. & Yamamoto, H. (1997). Study on optimal gate operation method in a long open channel. Japan Agicultural Research Quarterly Journal, 31(1), 21-28.

Published

2016-11-30

How to Cite

Fajar, A., Purwanto, M. Y. J., & Tarigan, S. D. (2016). Efficiency of pipe irrigation system to identify the feasibility of water supply in irrigation water management. Jurnal Irigasi, 11(1), 33–42. https://doi.org/10.31028/ji.v11.i1.33-42
Loading...